Наиболее известные методологические принципы и подходы.

Страница 5

Наиболее наглядным и показательным примером, показываю­щим специфику названных выше свойств, является область физико-химической биологии, связанная с исследованием совокупных свойств молекулярных образований высшей организации - биопо­лимеров типа ферментов, ДНК, РНК. Возьмем для примера пробле­мы познания комплекса свойств, присущих молекуле ДНК. Так, молекулу ДНК можно исследовать через свойства отдельных ее со­ставляющих атомов, природы отдельных химических и слабых (здесь физических) связей, функциональных групп, электрических зарядов отдельных фрагментов и т.д., т.е. на основании метода ре­дукции.

Наряду с этим можно исследовать свойства молекулы ДНК как целостного образования, свойства, не сводящиеся полностью к свойствам отдельных ее составляющих способность вступать в хи­мические взаимодействия с веществами определенных классов, об­ладать определенными седиментационными и реологическими ха­рактеристиками в соответствующих средах и др. Однако, нетрудно установить, что на основании метода редукции и целостного подхо­да, т е рассматривая молекулу ДНК как целостную молекулу и мо­лекулу, состоящую из набора элементов, мы не имеем возможности познать все присущие ей свойства Только тогда (и только тогда), когда мы будем исследовав молекулу ДНК как элемент в более высокоорганизованной системе (что не предписывается специально ни принципом целостности, ни, тем более, принципом редукции), мы можем раскрыть некоторые присущие ей высшие «метацелостные свойства». Для молекулы ДНК более высокоорганизованной систе­мой, в которой она функционирует как элемент, является система взаимосвязанных и регулируемых процессов метаболизма живой клетки

Подчеркнем, что речь идет об имманентных высших, т. е. «метацелостных», свойствах ДНК. Это хорошо видно из истории развития научных знаний о молекулярных составляющих живых организмов. Действительно, нуклеиновые кислоты и белковые тела были выде­лены из живых организмов в XIX в. и подвергались разнообразным исследованиям в изолированном виде, т.е. исследовались как хими­ческие объекты в химических экспериментальных ситуациях.

В результате к середине XX в. были раскрыты их структура как макромолекул и основные физико-химические свойства, но только в результате исследования функционирования этих молекулярных (химических) объектов в живой клетке были раскрыты их высшие информационные и регуляционные свойства. Другими словами, только в указанном выше случае мы получаем возможность обна­ружить заложенные в молекуле ДНК свойства как носителя генети­ческой информации и установить, что последовательность нуклеотидов не случайный набор групп определенной природы (азотистых оснований), а генетический код. Здесь именно на основании специ­фического познавательного подхода, эксплицируемого как «прин­цип контрредукции», мы получаем возможность познания высших, «метацелостных», свойств ДНК (которые, что важно подчеркнуть, присущи данному объекту как таковому, а не возникают у него только вследствие каких-либо воздействии в системе).

Здесь принцип контрредукции дает возможность для познания ряда сущностных свойств, имманентных объекту, а не только тех свойств, которые дополнительно появляются при включении объек­та в состав той или иной системы ввиду его неизбежной трансфор­мации, модификации и т. п. Так, например, установив свойства ДНК как матрицы с кодовой записью аминокислотной последовательно­сти, мы далее можем работать с изолированными ДНК и по генети­ческому коду расшифровать соответствующие аминокислотные по­следовательности у тех или иных белков и наоборот, по последова­тельности аминокислот изолированных белков определять последо­вательность нуклеотидов в ДКК. Более того, информационные и ре­гуляционные свойства молекул ДНК и РНК, биокаталитические и регуляционные свойства ферментов, познанные па основании метоконтрредукции в системах живой клетки, могут реализоваться в искусственных системах, которые и по материальному составу, и по организации отличаются от нативных («живых») систем.

Применение принципа контрредукции при рассмотрении его функционирования в сфере естествознания не ограничивается исследованием высших свойств объектов только в статистических материальных системах или системах с ограниченным временем акционирования (каковыми являются, например, искусственно организуемые химические процессы или процессы в отдельных конкретных организмах). Возможности метода более широки, так как под более высокоорганизованной системой в отношении к методу контрредукции следует понимать любую пространственно-временную, в том числе эволюционирующую, природную систему. Под пространственно-временной (или в частном случае пространст­венно-темпоральной) системой мы подразумеваем некоторую из­менчивую во времени систему (неорганическую, органическую, со­циальную и т. п.), которую по некоторым инвариантным признакам мы выделяем как некоторую целостность и определенный объект исследования. Для каждой такой системы можно ввести понятие элементарного отрезка времени, т. е. максимального временного ин­тервала, для которою рассматриваемые изменения в системе незна­чительны. Размерности этих отрезков для космологии, видимо, по­рядка тысяч лет и более, для геологи - порядка десятков и сотен лет, для микробиологии - порядка времени одной-двух генераций (порядка минут), для химической кинетики - от долей секунд до ча­сов, для истории общества и культуры - порядка десятков и сотен лет.

Страницы: 1 2 3 4 5 6