Синергетическая модель динамики политического сознания

Страница 1

Политические, духовные, экологические кризисы - атрибут не только нашего общества на поворотном моменте истории. Кризисы переживают и стабильные, сложившиеся страны Запада. В данной связи интересы многих исследователей обращаются к синергетике. Это новое междисциплинарное направление возникло в начале 70-х годов [16, с. 229-242]. Одна из его главных задач - познание общих принципов, лежащих в основе процессов самоорганизации, реализующихся в системах самой разной природы: физических, биологических, технических и социальных.

Синергетический стиль научного мышления включает в себя, с одной стороны, вероятностное видение мира, получившее бурное развитие в XIX веке. С другой стороны, синергетику можно рассматривать как современный этап развития кибернетики и системных исследований. Концепции и идеи теории самоорганизации нашли свое выражение в таких взаимосвязанных областях как теория диссипативных структур [12], теория детерминированного хаоса [17; 24, с 130-141], теория катастроф [27]. При этом синергетика, не будучи жестко ориентированной совокупностью методологических принципов и понятий, скорее играет роль системной рефлексии и исходит не из однозначного общепринятого определения понятия "система", а из присущего ей набора свойств. Среди них - нелинейность, целостность, устойчивость структуры, процессы ее становления и самоорганизации, системный "эффект сложения", приводящий к тому, что входящие в систему элементы определяются в зависимости от целого, от координации с другими ее элементами и ведут себя совершенно иначе, нежели в случае их независимости. В естествознании под динамической системой понимается любой объект или процесс, для которого возможно определить понятие состояния как некоторого мгновенного описания этой системы, известного в любой момент времени. Состояние системы дает представление о системе в целом в конкретный момент времени. Смена состояний выражает изменение системы во времени и определяется как внешними воздействиями, так и самой системой.

Различают линейные и нелинейные динамические системы. Под системы линейной системы слабо взаимодействуют между собой и практически независимо входят в систему. Изменения ответа линейной системы на внешнее воздействие почти пропорционально этому воздействию. Линейные системы обладают свойством аддитивности, при котором целая система сводима к сумме составляющих ее частей.

Однако в большинстве системных исследований условия линейности не выполняются, и появляется необходимость изучать общие принципы возникновения и развития сложных динамических систем, описываемых более сложными, нелинейными моделями. Система не линейна, если в разное время, при разных внешних воздействиях ее поведение определяется различными законами.

Нелинейная система имеет устойчивые и неустойчивые стационарные состояния. Причем одно и то же стационарное состояние такой системы при одних условиях может быть устойчивым, а при других неустойчивым. Устойчивые стационарные состоянии более присущи самой системе, а неустойчивые характеризуют моменты собственно изменений в ней. Изменяющиеся нелинейные системы отличают множественность стационарных состояний, единство их устойчивости и неустойчивости. Это создает феномен сложного и разнообразного поведения, не укладывающегося в единственную теоретическую схему и, может быть, непредсказуемого в определенные периоды времени.

Понятие "нелинейность" начинает использоваться все шире, приобретая мировоззренческий смысл. Идея нелинейности включает в себя многовариантность, альтернативность выбора путей эволюции и ее необратимость. Нелинейные системы испытывают влияние случайных, малых воздействий, порождаемых неравновесностью, нестабильностью, выражающихся в накоплениях флуктуаций, бифуркациях (ветвлениях путей эволюции), фазовых и самопроизвольных переходах. В таких системах возникают и поддерживаются локализованные процессы (структуры), в которых имеют место интеграция, архитектурное объединение структур по некоторым законам построения эволюционного целого, а также вероятностный (хаотический) распад этих структур на этапе нарастания их сложности [6, с. 148-161]. Нелинейные процессы невозможно надежно прогнозировать, ибо развитие совершается через случайность выбора пути в момент бифуркации, а сама случайность не повторяется вновь.

Именно в таких системах чаще всего возникают синергетические явления [12, 8]. При исследованиях сложных нелинейных систем можно выделить два различных подхода в зависимости от того, на что в первую очередь направлено внимание исследователя: на возможные сценарии прохождения точки бифуркации без детализации хаотического поведения в этот момент или непосредственно на поведение системы в хаосе (позиции "метанаблюдателя" и "наблюдателя" [2, с. 229-242]). Первый подход строится на модели структурно устойчивой системы, с единственной кризисной точкой - точкой бифуркации практически всегда находящейся в состоянии гомеостаза. Это взгляд наблюдателя извне. В арсенале синергетических методов такая ситуация описывается с помощью теории катастроф. Математический метод описания эволюции различных природных процессов был создан Р.Томом*.

Страницы: 1 2 3 4 5 6